Structural Motifs in Protein Biology

All proteins are made of basic secondary structure units, either α-helix or β-sheets, determined by hydrogen bonding between the amino acids within a peptide chain. On a larger scale, structures are formed by the combination of these secondary structures, and these can form supersecondary structures known as “motifs”.

The amino acids that form the basis of proteins can form motifs, which are often studied by scientists trying to assign a function to a proteinurfin | Shutterstock

Motifs have been used as a guide for protein structure for many years. At first, it seemed that proteins which have a similar function shared a resemblance in their 3D shapes, the notable example being hemoglobin and myoglobin. However, in 1973, it was shown that proteins with different functions can also be similar in structure, when Rao and Rossmann identified the nucleotide-binding domains in flavodoxin and lactate dehydrogenase.

What are the basic motifs of proteins?

The simplest motifs are composed of multiple secondary structure units. These simple motifs can contain α-helices and β-sheets that are layered adjacent to one another either in the same direction (parallel) or in the opposite direction (anti-parallel). The simplest motif is the formation of a “loop”, known as a β-turn if it is short, while an unstructured connection is termed a “coiled region”.

Triple helix motif

This is where three α-helices are further twisted into a single coil, or helix. This motif is associated with collagen but has been found in proteins associated with the immune system and host defense.

Four helix bundle

This is where four α-helices are packed together, commonly in a lengthwise direction. This motif can be associated with other motifs to form the overall protein structure or be isolated from other motifs. This motif has been observed in a variety of proteins, including human growth hormone, apolipoprotein and interleukins.

Another example is the combination of β-sheets.

Hairpin

This is a very simple structure, consisting of two antiparallel β-sheets joined by a loop. There can be more than one hairpin connection to form a larger motif.

Greek key motif

This motif also consists of several anti-parallel β-sheets, however, one of the connections between these β-sheets is not a hairpin connection.

Parallel β-helix

This is where parallel β-sheets fold together to form a right-handed coil or helix. Proteins containing this motif include pectate lyase and the tail spike of the phage virus, P22.

β-roll

This motif is similar to the parallel β-helix, however, it is distinguished by being a di-β-strand motif – the parallel β-helix is a tri-β-strand motif. An example of a protein with a β-roll is alkaline phosphatase.

Are there more complex motifs?

These α-helices and β-sheets are not only joined by loops and β-turns but can also be joined by a β-sheet or an α-helix. Metal ions can also play a role in the formation of motifs.

TIM barrel

TIM (triose phosphate isomerase) barrels are where parallel β-sheets are joined by α-helices. This is a widespread motif and was first identified in triose phosphate isomerase, hence the name!

Zinc finger motif

Zinc finger motifs are a group of motifs rather than a single motif. All of these motifs utilize a zinc ion to stabilize the motif structure. In the classical zinc finger motif, two antiparallel β-sheets and an α-helix are brought together by the zinc ion.

These “ββα” units form finger-like projections, which gave rise to their name. Classic zinc fingers are associated with proteins which bind to DNA. Other categories of zinc fingers include nuclear hormone receptors and GAL-4 related proteins.

MegaMotifBase

The motifs listed above are only a subset of known motifs. As implied above, motifs are an important part of proteins, and having information available about these motifs would be of benefit to those attempting to engineer a protein or those wishing to find the function of a new protein.

Pugalenthi and co. developed a database, MegaMotifBase, which contains a database of information on important protein motifs.

Further Reading

Last Updated: Apr 5, 2019

Dr. Maho Yokoyama

Written by

Dr. Maho Yokoyama

Dr. Maho Yokoyama is a researcher and science writer. She was awarded her Ph.D. from the University of Bath, UK, following a thesis in the field of Microbiology, where she applied functional genomics to Staphylococcus aureus . During her doctoral studies, Maho collaborated with other academics on several papers and even published some of her own work in peer-reviewed scientific journals. She also presented her work at academic conferences around the world.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Yokoyama, Maho. (2019, April 05). Structural Motifs in Protein Biology. News-Medical. Retrieved on January 02, 2024 from https://www.news-medical.net/life-sciences/Structural-Motifs-in-Protein-Biology.aspx.

  • MLA

    Yokoyama, Maho. "Structural Motifs in Protein Biology". News-Medical. 02 January 2024. <https://www.news-medical.net/life-sciences/Structural-Motifs-in-Protein-Biology.aspx>.

  • Chicago

    Yokoyama, Maho. "Structural Motifs in Protein Biology". News-Medical. https://www.news-medical.net/life-sciences/Structural-Motifs-in-Protein-Biology.aspx. (accessed January 02, 2024).

  • Harvard

    Yokoyama, Maho. 2019. Structural Motifs in Protein Biology. News-Medical, viewed 02 January 2024, https://www.news-medical.net/life-sciences/Structural-Motifs-in-Protein-Biology.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post
You might also like...
Proteomic study pinpoints potential biomarkers for long-COVID diagnosis and persistent health impacts