Insulin Resistance Pathophysiology

Glucose is one of the body's most important sources of energy. Glucose is absorbed from the blood into cells where it provides energy for a range of cellular functions. This cellular uptake of glucose is facilitated by the hormone insulin, which is secreted by the beta cells of the pancreas. Insulin also helps convert excess glucose into glycogen for storage in the liver.

In people with insulin resistance, the muscles, fat and liver cells fail to respond to insulin in this way and glucose remains in the blood rather than being taken up, even when insulin levels are raised. Instead, the triglycerides in fat or adipose cells are broken down to provide free fatty acids as the energy source.

Failure of liver cells to respond to insulin by converting glucose to glycogen, means glycogen stores are also decreased.

As the glucose remains in the blood rather than being taken up and used, hyperglycemia or a raised blood glucose level results. This hyperglycemia triggers the beta cells to produce even more insulin, raising the level of insulin further still.

This insulin resistance and hyperglycemia can lead to type 2 diabetes and metabolic syndrome. Metabolic syndrome is characterized by an excess distribution of abdominal fat, high blood pressure, raised levels of blood cholesterol and triglycerides and decreased levels of good cholesterol or high density lipoprotein (HDL) cholesterol. Together, these symptoms increase the risk of cardiovascular disease and stroke.

A variety of genetic and environmental factors are thought to raise the risk of insulin resistance but being overweight and physically inactive are major causative contributors.

Further Reading

Last Updated: Jul 3, 2023

Dr. Ananya Mandal

Written by

Dr. Ananya Mandal

Dr. Ananya Mandal is a doctor by profession, lecturer by vocation and a medical writer by passion. She specialized in Clinical Pharmacology after her bachelor's (MBBS). For her, health communication is not just writing complicated reviews for professionals but making medical knowledge understandable and available to the general public as well.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mandal, Ananya. (2023, July 03). Insulin Resistance Pathophysiology. News-Medical. Retrieved on January 02, 2024 from https://www.news-medical.net/health/Insulin-Resistance-Pathophysiology.aspx.

  • MLA

    Mandal, Ananya. "Insulin Resistance Pathophysiology". News-Medical. 02 January 2024. <https://www.news-medical.net/health/Insulin-Resistance-Pathophysiology.aspx>.

  • Chicago

    Mandal, Ananya. "Insulin Resistance Pathophysiology". News-Medical. https://www.news-medical.net/health/Insulin-Resistance-Pathophysiology.aspx. (accessed January 02, 2024).

  • Harvard

    Mandal, Ananya. 2023. Insulin Resistance Pathophysiology. News-Medical, viewed 02 January 2024, https://www.news-medical.net/health/Insulin-Resistance-Pathophysiology.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post
You might also like...
Citrus compounds show zesty promise in type 2 diabetes management