Eosinophil Function

Eosinophils are a specialized type of cell within the immune system that are involved in anti-parasitic and inflammatory responses. This article provides a brief overview of eosinophils.

Illustration of an eosinophil, showing the granules and bilobed nucleus - by somersault1824somersault1824 | Shutterstock

What are eosinophils?

Eosinophils are specialized pro-inflammatory white blood cells. They have a bilobed nucleus and are granulocytes, which means they contain granules within their cytoplasm. These granules contain enzymes and proteins with different functions.

Maturation and development of eosinophils

Eosinophils arise from hematopoietic stem cells (HSCs) in the bone marrow, and take approximately eight days to mature. After maturity, eosinophils migrate into the blood vessels and travel to target tissues around the body. Proteins and cytokines (such as IL-3, IL-5, and GM-CSF) are involved in the maturation, survival, and persistence of eosinophils.

Migration and movement of eosinophils

The migration and movement of eosinophils is promoted by chemokines, such as CCL11, CCL24 and CCL26 and chemokine receptors, such as CCR3. Eosinophils migrate to several organs through primary and secondary lymph organs, such as the thymus, lymph nodes, and spleen.

Granulocyte features

The granules in eosinophils contain four major proteins: major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil peroxidize (EPO), and eosinophil-derived neurotoxin (EDN). These are involved in phagocytosis, cell killing, antigen presentation, and platelet interactions. Eosinophils phagocytose invading pathogens, allowing them to present pathogenic antigens to other cells. The actions of EPO also lead to oxidative burst, a crucial part of phagocytosis.

Eosinophil purpose and function

Parasitic infections

Eosinophils are crucial for combatting parasitic infections and inflammatory processes, such as allergic reactions. Other functions include killing cells, anti-bacterial activity, and controlling inflammatory responses.

Plasma cell survival

Eosinophils promote plasma cell survival to regulate the balance between T-helper and T-regulatory responses in various organs, such as gut and lungs. Eosinophils also regulate the glucose tolerance within adipose tissues and produce several different types of growth factors which contribute to tissue repair.

Eosinophil-platelet interactions

Platelets aid white blood cells to sense inflammatory stimuli and communicate with other cells. Eosinophil-platelet interactions occur through certain cell surface receptors, which promotes activation of the bound platelets and surrounding endothelial cells. This causes long-term inflammatory responses to be activated.

Eosinophil-platelet interactions can be strengthened via the expression of granulocytes and certain chemokines. This affects the long-term remodeling of tissues and can lead to chronic inflammation.

Eosinophils and infectious disease

Viral infections

Eosinophils are recruited in the lower airway epithelium during viral infections, such as a respiratory syncytial virus (RSV). RSV can activate eosinophils which promotes virus clearance through the production of ribonucleases and cytokines. Eosinophils are involved in the host response to the influenza virus. They undergo degranulation (the release of their granules), upregulate antigen presentation, and enhance effector T-cell responses,

Fungal infections

Eosinophils are activated by recognizing certain antigens present in fungi, such as β-glucan. Eosinophils release their proinflammatory and cytotoxic granule proteins, and various chemokines in response to a fungal infection. Eosinophils can phagocytose fungi, such as Cryptococcus neoformans and present antigens to other immune cells. They also release cytokines, such as IL-12, IFNγ, and TNF, during fungal infection. These cytokines promote the maturation of certain effector T-cells, which aid in the immune response to fungal infections.

Eosinophil in immune-mediated diseases and disorders

The increase of eosinophils within the blood is known as eosinophilia. This can result from disorders, such as leukemia.

Immune-mediated diseases

Under normal circumstances, eosinophils are not present in the skin. Several dermatological diseases exhibit tissue eosinophilia. Atopic dermatitis (AD) is an inflammatory disease of the skin characterized by dysfunction of epithelial cells. The improper expression and activity of eosinophils contribute to other dermatological diseases, such as chronic spontaneous urticaria, and gleich syndrome.

Further Reading

Last Updated: Jan 17, 2019

Written by

Samuel Mckenzie

Sam graduated from the University of Manchester with a B.Sc. (Hons) in Biomedical Sciences. He has experience in a wide range of life science topics, including; Biochemistry, Molecular Biology, Anatomy and Physiology, Developmental Biology, Cell Biology, Immunology, Neurology  and  Genetics.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mckenzie, Samuel. (2019, January 17). Eosinophil Function. News-Medical. Retrieved on January 02, 2024 from https://www.news-medical.net/life-sciences/Eosinophil-Function.aspx.

  • MLA

    Mckenzie, Samuel. "Eosinophil Function". News-Medical. 02 January 2024. <https://www.news-medical.net/life-sciences/Eosinophil-Function.aspx>.

  • Chicago

    Mckenzie, Samuel. "Eosinophil Function". News-Medical. https://www.news-medical.net/life-sciences/Eosinophil-Function.aspx. (accessed January 02, 2024).

  • Harvard

    Mckenzie, Samuel. 2019. Eosinophil Function. News-Medical, viewed 02 January 2024, https://www.news-medical.net/life-sciences/Eosinophil-Function.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post